Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Tri-*n*-butylamine + Triethylamine, + Tetrahydrofuran, + Tetradecane, + Tetrachloroethylene, + Pyridine, or + Trichloroethylene at (298.15, 303.15, and 308.15) K

Jyoti N. Nayak, Mrityunjaya I. Aralaguppi,* Udaya S. Toti, and Tejraj M. Aminabhavi

Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India[†]

The results of densities, viscosities, and refractive indices at (298.15, 303.15, and 308.15) K and speed of sound at 298.15 K in the binary mixtures of tri-*n*-butylamine with triethylamine, tetrahydrofuran, tetradecane, tetrachloroethylene, pyridine, and trichloroethylene have been measured and used to calculate the excess molar volume, deviations in viscosity, molar refraction, and speed of sound. These results have been discussed to study the type of mixing behavior between the mixing molecules. The measured properties have been fitted to a polynomial equation to derive the coefficients and estimate the standard errors.

Introduction

Tri-*n*-butylamine is an industrially important liquid, which is used as an intermediate in the production of corrosion inhibitors, agrochemicals, petroleum, fuel, lubricant additives, photochemicals, pharmaceuticals, textile dyes, rubber auxiliaries, viscosity stabilizers, paints, and lacquers. Also, it is used as a catalyst in the production of polymers such as phenolic resins and polyurethane foams.

Mixing behaviors in liquid mixtures containing tri-nbutylamine are interesting due to the presence of an amine group coupled with the tri-*n*-butyl chain. Such studies on the excess thermodynamic properties of binary mixtures containing tri-*n*-butylamine have been reported earlier.^{1,2} To present more data on binary mixtures of tri-n-butylamine with organic compounds, an effort is made in this study to include other liquids such as triethylamine, tetrahydrofuran, tetradecane, tetrachloroethylene, pyridine, and trichloroethylene. Studies on binary mixtures containing the above liquids with liquids other than tri-*n*butylamines have been reported in the literature.^{3–7} Physicochemical properties such as density, ρ , viscosity, η , and refractive index for the sodium D-line, $n_{\rm D}$, at (298.15, 303.15, and 308.15) K and speed of sound, u, at 298.15K have been measured. Using these data, excess molar volume (V^{E}), deviation in viscosity ($\Delta \eta$), deviation in molar refraction (ΔR), and deviation in speed of sound (Δu) have been studied. These data are further fitted to a Redlich-Kister polynomial equation⁸ to derive binary coefficients and estimate standard errors.

Experimental Section

Materials. High purity laboratory reagent grade samples of tri-*n*-butylamine and tetradecane, analytical reagent grade samples of triethylamine, and spectroscopic grade samples of tetrahydrofuran, pyridine, tetrachloroethylene, and trichloroethylene were procured from s. d. fine Chemicals, Mumbai, India. The mole percent purities of these

* To whom correspondence should be addressed. E-mail: aralaguppi@ yahoo.com.

CEPS Communication No. 19.

Table 1. Comparison of Experimental Densities (ρ) and Refractive Indices (n_D) of Pure Liquids with Literature Values at 298.15 K

mol %	$ ho/{f kg}$	g•m ^{−3}	n _D	
purity	expt	lit.	expt	lit.
>99.0	773.9	774.0^{1}	1.4276	1.4280^{22}
>99.5	723.2	722.8^{22}	1.3992	1.3980 22
>99.7	882.9	883.7 ²²	1.4049	1.4050 23
>99.0	760.7	759.911	1.4282	1.4290^{11}
>99.9	1616.0	1614.3^{22}	1.5036	1.5032^{22}
>99.5	979.0	978.2^{24}	1.5062	1.5074^{24}
>99.5	1456.7	1455.5^{13}	1.4752	1.4745^{13}
	mol % purity >99.0 >99.5 >99.7 >99.0 >99.9 >99.9 >99.5 >99.5	mol % ρ/kξ >99.0 773.9 >99.5 723.2 >99.7 882.9 >99.0 760.7 >99.9 1616.0 >99.5 979.0 >99.5 1456.7	$\begin{array}{c c} & \rho/kg {\cdot}m^{-3} \\ \hline purity & expt & lit. \\ \hline > 99.0 & 773.9 & 774.0^1 \\ > 99.5 & 723.2 & 722.8^{22} \\ > 99.7 & 882.9 & 883.7^{22} \\ > 99.0 & 760.7 & 759.9^{11} \\ > 99.9 & 1616.0 & 1614.3^{22} \\ > 99.5 & 979.0 & 978.2^{24} \\ > 99.5 & 1456.7 & 1455.5^{13} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

liquids as determined by GC (HP 6890) using a FID detector were >99. These data are reported in Table 1, along with density and refractive index results measured at 298.15 K for pure liquids, and are compared with the literature values.

Binary mixtures were prepared by mass⁹ in stoppered conical flasks. The mass measurements accurate to ± 0.01 mg were performed on a digital electronic balance (Mettler, AE 240, Switzerland). A set of nine compositions were prepared for each mixture, and their physical properties were measured at the respective compositions in the mole fraction scale from 0.1 to 0.9 in steps of 0.1. In all cases, the possible error in mole fraction was less than 0.0002.

Methods. Densities of liquids and liquid mixtures were measured within an accuracy of ± 0.0001 g.cm⁻³ using a capillary-type pycnometer of capacity 10 cm³. Experimental details and calibrations of the pycnometer and data measurements are the same as reported earlier.⁹⁻¹¹

Viscosities were measured using a Cannon Fenske viscometer (size 75, ASTM D 445, Industrial Research Glassware Ltd., Roselle, NJ). An electronic digital stopwatch with a readability of ± 0.01 s was used for flow time measurements. The measured viscosity values are accurate to ± 0.001 mPa·s. The calibration methods of the pycnometer are the same as those reported earlier.^{9,10}

Refractive indices for the sodium D-line were measured using a thermostatically controlled Abbe refractometer (Atago 3T, Japan). A minimum of three independent

Table 2.	Experimental Density (<i>ρ</i>), Viscosity (η), Refractive	Index (n _D),	and Speed o	of Sound (u)	of Binary	Mixtures at
Differen	t Temperatures							

<i>X</i> ₁	$ ho/{ m kg}{\cdot}{ m m}^{-3}$	η/mPa∙s	n _D	$u/m \cdot s^{-1}$	<i>X</i> 1	$ ho/{ m kg}{ m \cdot}{ m m}^{-3}$	η/mPa∙s	n _D	$u/m \cdot s^{-1}$
	Tri- <i>n</i> -butylan	nine (1) + Triet	thylamine (2)			Tri- <i>n</i> -butyla	mine (1) + Teti	radecane (2)	
	0	298.15 K	0			Ũ	298.15 K		
0.0	723.3	0.367	1.3992	1123	0.0	760.7	2.032	1.4282	1315
0.1072	732.0	0.433	1.4052	1143	0.1081	761.9	1.930	1.4283	1303
0.2039	739.2	0.491	1.4104	1160	0.2058	762.9	1.842	1.4282	1292
0.3083	745.9	0.307	1.4131	11/9	0.2802	765.2	1.774	1.4280	1207
0.4000	751.5	0.043	1.4104	1210	0.4095	705.5	1.000	1.4270	1203
0.5025	760.2	0.801	1 4218	12210	0.6101	767.9	1.505	1.4278	1275
0.6928	763.7	0.899	1.4238	1232	0.7051	769.3	1.441	1.4279	1272
0.7914	767.1	1.003	1.4256	1236	0.7999	770.9	1.375	1.4281	1270
0.8942	770.6	1.118	1.4265	1246	0.8953	772.4	1.309	1.4280	1267
1.0	773.9	1.239	1.4276	1262	1.0	773.9	1.239	1.4276	1262
		303.15 K					303.15 K		
0.0	718.6	0.349	1.3958		0.0	757.0	1.827	1.4260	
0.1072	727.3	0.411	1.4031		0.1081	758.1	1.750	1.4258	
0.2039	734.6	0.464	1.4079		0.2058	759.2	1.671	1.4257	
0.3083	741.4	0.533	1.4116		0.2802	760.0	1.612	1.4256	
0.4066	747.2	0.602	1.4144		0.4095	761.5	1.518	1.4254	
0.5029	752.2	0.672	1.4178		0.5112	762.9	1.448	1.4254	
0.5905	750.0	0.746	1.4194		0.6101	764.Z 765.5	1.380	1.4254	
0.0928	763.0	0.833	1 4230		0.7031	767.0	1.329	1.4256	
0.8942	766.5	1.026	1.4241		0.8953	768.4	1.222	1.4255	
1.0	769.2	1.123	1.4255		1.0	769.2	1.124	1.4255	
		208 15 K					208 15 K		
0.0	713 7	0.332	1 3929		0.0	753 3	1 653	1 4236	
0.1072	722.8	0.388	1.4012		0.1081	754.4	1.570	1.4234	
0.2039	730.2	0.438	1.4054		0.2058	755.5	1.499	1.4234	
0.3083	737.1	0.499	1.4102		0.2802	756.3	1.450	1.4232	
0.4066	742.9	0.561	1.4122		0.4095	757.8	1.368	1.4231	
0.5029	747.9	0.625	1.4148		0.5112	759.1	1.310	1.4230	
0.5905	751.8	0.688	1.4169		0.6101	760.5	1.261	1.4230	
0.6928	755.4	0.767	1.4189		0.7051	761.9	1.216	1.4231	
0.7914	758.9	0.844	1.4204		0.7999	763.1	1.173	1.4231	
0.8942	762.4	0.934	1.4217		0.8953	764.4	1.135	1.4231	
1.0	705.7	1.020	1.4220		1.0	705.7	1.105	1.4220	
	Tri-n-butylami	ine (1) + Tetral	hydrofuran (2	2)	Т	ri- <i>n</i> -butylamin	e (1) + Tetrach	loroethylene ((2)
		298.15 K		4000			298.15 K		1000
0.0	882.9	0.485	1.4049	1288	0.0	1616.0	0.875	1.5036	1033
0.1033	853.3	0.571	1.4120	1283	0.1040	1433.8	0.917	1.4872	1052
0.2033	833.4 818 0	0.030	1.4130	1278	0.2059	1295.5	0.958	1.4748	1073
0.3041	808.1	0.818	1 4200	1274	0.3008	1095.0	1 033	1.4055	1116
0.5024	799.2	0.897	1.4229	1269	0.4967	1026.9	1.065	1.4506	1136
0.5974	792.5	0.967	1.4235	1267	0.6069	955.4	1.104	1.4437	1162
0.6814	787.5	1.028	1.4249	1266	0.6990	904.2	1.136	1.4396	1184
0.7898	782.1	1.100	1.4265	1264	0.8018	854.3	1.172	1.4350	1209
0.8941	777.8	1.167	1.4269	1263	0.9007	812.0	1.206	1.4316	1235
1.0	773.9	1.239	1.4276	1262	1.0	773.9	1.239	1.4276	1262
		303.15 K					303.15 K		
0.0	877.5	0.460	1.4026		0.0	1607.5	0.831	1.5005	
0.1033	847.9	0.539	1.4094		0.1040	1425.9	0.869	1.4842	
0.2033	828.4	0.618	1.4141		0.2059	1288.1	0.902	1.4721	
0.3041	814.2	0.693	1.4155		0.3068	1181.4	0.930	1.4030	
0.4012	803.3 704 7	0.703	1.4178		0.4073	1089.1	0.960	1.4339	
0.5024	788 2	0.835	1.4203		0.4307	949 9	1 018	1.4475	
0.6814	783.1	0.949	1.4226		0.6990	899.4	1.053	1.4367	
0.7898	777.9	1.014	1.4238		0.8018	849.4	1.081	1.4325	
0.8941	773.6	1.071	1.4246		0.9007	808.0	1.104	1.4289	
1.0	769.2	1.124	1.4254		1.0	769.2	1.124	1.4255	
		308.15 K					308.15 K		
0.0	871.2	0.439	1.3998		0.0	1597.5	0.791	1.4978	
0.1033	842.5	0.509	1.4068		0.1040	1418.2	0.818	1.4810	
0.2033	823.5	0.581	1.4132		0.2059	1281.3	0.844	1.4692	
0.3041	809.3	0.646	1.4130		0.3068	1172.5	0.869	1.4594	
0.4012	798.9	0.708	1.4156		0.40/3	1083.2	0.893	1.4510	
0.5024	790.3 783 8	0.709	1.4170 1 <u>1</u> 188		0.4907	945.9	0.914	1.4400	
0.6814	778.9	0.871	1.4203		0.6990	894 7	0.961	1.4340	
0.7898	773.6	0.928	1.4212		0.8018	845.3	0.984	1.4298	
0.8941	769.4	0.976	1.4224		0.9007	803.4	1.006	1.4263	
1.0	765.7	1.020	1.4228		1.0	765.7	1.028	1.4228	

Table	2 ((Conti	nued)
-------	-----	--------	-------

Tri- <i>n</i> -hutylamine (1) + Pyridine (2) Tri- <i>n</i> -hutylamine (1) + Trichloroothylane (2)					
Tri- <i>n</i> -butylamine (1) + Pyridine (2) Tri- <i>n</i> -butylamine (1) + Trichloroethylene (2)					
298.15 K 298.15 K					
0.0 979.0 0.885 1.5062 1412 0.0 1456.7 0.595 1.4752	1028				
0.0977 927.2 0.895 1.4866 1363 0.0996 1299.3 0.652 1.4632	1054				
0.1951 890.5 0.914 1.4708 1333 0.1953 1186.7 0.713 1.4563	1084				
0.2949 862.6 0.941 1.4606 1308 0.2913 1098.3 0.776 1.4502	1108				
0.3938 841.3 0.971 1.4513 1290 0.3902 1025.1 0.842 1.4448	1129				
0.4898 824.7 1.002 1.4464 1282 0.4875 966.3 0.909 1.4402	1151				
0.5884 810.8 1.038 1.4403 1278 0.5906 914.7 0.978 1.4370	1170				
0.6899 799.0 1.077 1.4359 1275 0.6843 875.0 1.041 1.4346	1187				
0.7846 789.9 1.122 1.4333 1271 0.7846 838.1 1.105 1.4318	1205				
0.8869 781.6 1.175 1.4303 1266 0.8835 806.5 1.167 1.4298	1227				
1.0 773.9 1.239 1.4276 1262 1.0 773.3 1.239 1.4276	1262				
303.15 K 303.15 K					
0.0 973.7 0.820 1.5025 0.0 1447.1 0.571 1.4722					
0.0977 922.3 0.833 1.4830 0.0996 1291.8 0.622 1.4604					
0.1951 885.6 0.849 1.4685 0.1953 1180.1 0.675 1.4530					
0.2949 858.0 0.872 1.4574 0.2913 1092.1 0.730 1.4469					
0.3938 836.8 0.898 1.4491 0.3902 1019.6 0.788 1.4417					
0.4898 820.3 0.925 1.4428 0.4875 961.0 0.846 1.4377					
0.5884 806.5 0.957 1.4376 0.5906 909.8 0.907 1.4343					
0.6899 794.7 0.993 1.4335 0.6843 870.3 0.962 1.4315					
0.7846 785.7 1.031 1.4300 0.7846 833.7 1.018 1.4295					
0.8869 777.5 1.077 1.4277 0.8835 802.2 1.071 1.4272					
1.0 769.2 1.124 1.4255 1.0 769.2 1.124 1.4255					
308.15 K 308.15 K					
0.0 968.6 0.766 1.5016 0.0 1439.5 0.549 1.4690					
0.0977 917.4 0.771 1.4795 0.0996 1284.4 0.592 1.4576					
0.1951 880.7 0.783 1.4662 0.1953 1173.3 0.637 1.4495					
0.2949 853.3 0.804 1.4542 0.2913 1086.0 0.684 1.4436					
0.3938 832.2 0.825 1.4470 0.3902 1013.9 0.734 1.4386					
0.4898 815.9 0.848 1.4392 0.4875 955.8 0.783 1.4352					
0.5884 802.1 0.876 1.4348 0.5906 904.9 0.835 1.4317					
0.6899 790.5 0.909 1.4311 0.6843 865.7 0.882 1.4284					
0.7846 781.6 0.940 1.4268 0.7846 829.1 0.930 1.4270					
0.8869 773.3 0.979 1.4252 0.8835 797.8 0.976 1.4246					
1.0 765.7 1.028 1.4228 1.0 765.7 1.028 1.4228					

readings were taken for each composition, and the average value was considered in all calculations. Refractive index data are accurate to ± 0.0001 units.

Speed of sound was measured using a variable path single-crystal interferometer (Mittal Enterprises, model M-84, New Delhi). A crystal-controlled high-frequency generator was used to excite the transducer at a frequency of 1 MHz. The frequency was measured within an accuracy of 1 in 10⁴ using a digital frequency meter. The interferometer cell was filled with the test liquid, and water was circulated around the measuring cell from a thermostat maintained at 298.15 \pm 0.01 K. Details of the speed of sound measurements have been given earlier,¹² and these values are accurate to ± 2 in 1000 m·s⁻¹.

In all the property measurements, temperature was controlled within an accuracy of ± 0.01 K using a constanttemperature bath. A Julabo immersion cooler (FT 200, Julabo Labortechnik, Gmbh, Germany) was used to cool the water bath. This unit was installed at the intake of a heating circulator to draw the heat away from the circulating bath liquid. An immersion probe was connected to the instrument with a flexible and insulated tube. To prevent the immersion probe from icing, it was completely immersed in the bath liquid.

At least three independent readings of all the physical property (ρ , η , n_D , and u) measurements were taken for each composition, and the averages of these values are presented in Table 2.

Results and Discussion

Excess molar volumes (V^E) of the binary mixtures of tri*n*-butylamine + triethylamine, + tetrahydrofuran, + tetradecane, + pyridine, + tetrachloroethylene, or + trichloroethylene have been calculated as

$$V^{\rm E} = V_{\rm m} - V_1 x_1 - V_2 x_2 \tag{1}$$

where $V_{\rm m}$ is the molar volume of the mixture and V_1 and V_2 are the molar volumes of pure components 1 and 2 of the mixture. The results of excess molar volume are reproducible to $\pm 0.005 \times 10^{-6} \text{ m}^3 \cdot \text{dmol}^{-1}$. Generally, the principal solvent, tri-n-butylamine, is regarded as component 1 of the mixture. These data at 298.15 K are displayed in Figure 1. It is observed that, for mixtures of tri-nbutylamine + pyridine, + tetrahydrofuran, or + tetradecane, V^{E} data are positive. These positive V^{E} values vary in the order pyridine > tetrahydrofuran > tetradecane because of the repulsive forces operating between the component liquids of the mixtures. These data vary in accordance with their dipole moments and dielectric constants. For instance, the dielectric constants of pyridine, tetrahydrofuran, and tetradecane are respectively, 12.91, 7.58, and 4.7 in comparison with 2.29 of tri-*n*-butylamine. The molar volumes of tetrahydrofuran and pyridine are almost identical, that is, 81.66 and 80.79 cm³/mol, respectively, and hence, the shapes as well as the magnitude of V^E for mixtures containing these liquids are almost identical.

In the case of mixtures of tri-*n*-butylamine + tetrachloroethylene, or + trichloroethylene, the V^{E} versus x_{1} plots exhibit sigmoidal trends and their variations are almost identical; that is, at higher amounts of tri-*n*-butylamine (i.e., beyond $x_{1} = 0.8$), V^{E} values are negative. Trichloroethylene, having a dielectric constant of 0.82 and dipole

Figure 1. Excess molar volume vs mole fraction of tri-*n*-butylamine with (\bigcirc) tri-*n*-ethylamine, (\square) tetrahydrofuran, (\triangle) tetradecane, (\bullet) tetrachloroethylene, (\blacksquare) pyridine, and (\blacktriangle) trichloroethylene at 298.15 K.

Figure 2. Deviations in viscosity vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

moment of 0.80 D, exhibits lower positive values of V^{E} than tetrachloroethylene, which has a dielectric constant of 2.28 with zero dipole moment. Such positive trends have also been observed earlier.¹³ On the other hand, for the binary mixture of tri-*n*-butylamine + triethylamine, the V^{E} values are negative up to $x_{1} = 0.8$, but beyond that, V^{E} becomes positive. It may be noted that the dielectric constants as well as the dipole moments of tri-*n*-butylamine and triethylamine are almost identical, that is, 2.29, 2.423, 0.78, and 0.87 D, respectively.

We have also computed deviation in viscosity $(\Delta \eta)$, deviation in molar refractivity (ΔR) , and deviation in speed of sound (Δu) using the following general equation.^{12,14–17}

$$\Delta Y = Y_{\rm m} - Y_1 x_1 - Y_2 x_2 \tag{2}$$

where ΔY represents the desired deviation in $\Delta \eta$, ΔR , Δu , and Δk_s , respectively, whereas Y_1 and Y_2 represent the respective pure liquid property, viz., η , R, u, and k_s (=1/ $u^2 \rho$) of the pure components 1 and 2 of the mixture. While computing $\Delta \eta$ values, mole fraction was used, but for calculating ΔR and Δu of the mixtures, volume fraction ϕ_i (= $\sum x_i v_i / \sum_{i=1}^2 x_i v_i$) was used.^{10,16,18–20}

Figure 3. Deviations in molar refraction (ΔR) vs volume fraction at 298.15 K for the same mixtures presented in Figure 1.

Figure 4. Deviations in speed of sound (Δu) vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

The plots of $\Delta \eta$ versus x_1 at 298.15 K are displayed in Figure 2. It is observed that large negative values of $\Delta \eta$ are observed for tri-*n*-butylamine + triethylamine, + pyridine, or + tetradecane. Negative $\Delta \eta$ values for these mixtures vary in the order triethylamine > pyridine > tetradecane. The positive $\Delta \eta$ values are observed for mixtures of tri-*n*-butylamine + tetrahydrofuran and + tetrachloroethylene, while for mixtures of tri-*n*-butylamine + trichloroethylene an incipient inversion occurs at about $x_1 = 0.5$, giving negative and positive values on either side of the equimolar composition of the mixture.

The results of deviations in molar refraction (ΔR) plotted as a function of ϕ_i of tri-*n*-butylamine at 298.15 K displayed in Figure 3 indicate negative values for all the mixtures, except that for tri-*n*-butylamine + tetradecane, which is almost zero. The negative ΔR values vary in the order tetrahydrofuran > pyridine > trichloroethylene > tetrachloroethylene > triethylamine > tetradecane.

Figure 5. Effect of temperature on V^{E} for tri-*n*-butylamine + pyridine. Mixture at (\bigcirc) 298.15 K, (\square) 303.15 K, and (\triangle) 308.15 K.

Figure 6. Effect of temperature on $\Delta \eta$ for tri-*n*-butylamine + tetrahydrofuran. Mixture at (\bigcirc) 298.15 K, (\square) 303.15 K, and (\triangle) 308.15 K.

The results of Δu versus x_1 of the binary mixtures at 298.15 K are presented in Figure 4. A large negative Δu is observed in the case of tri-*n*-butylamine + pyridine, whereas sigmoidal trends with an inversion in sign are observed for mixtures of tri-*n*-butylamine with triethylamine or trichloroethylene. On the other hand, for mixtures of tri-*n*-butylamine with tetrahydrofuran, tetrachloroethylene, or tetradecane, Δu values are negative and vary almost identically over the entire composition range.

The effect of temperature on $V^{\rm E}$ is displayed in Figure 5 for mixtures of tri-*n*-butylamine + pyridine. It is observed that $V^{\rm E}$ values change with temperature in the order 303.15 < 298.15 < 308.15 K. Similarly, the effect of temperature on $\Delta \eta$ is displayed in Figure 6 for mixtures of tri-*n*-butylamine + tetrahydrofuran. $\Delta \eta$ values change with temperature in the order 298.15 < 308.15 < 303.15 K.

All the quantities (V^{E} , $\Delta \eta$, ΔR , Δu , and k_{s}) have been fitted to a Redlich and Kister⁸ equation by the method of least-squares using the Marquardt algorithm²¹ to derive

Table 3. Derived Parameters of Eq 3 for VariousFunctions of the Binary Mixtures at DifferentTemperatures

1 omportatur os						
function	temp/K	A_1	A_2	A_3	σ	
Tri- <i>n</i> -butylamine (1) + Triethylamine (2)						
$V^{E}/(10^{-6} \text{ m}^{3} \cdot \text{mol}^{-1})$	298.15	-0.902	-0.507	1.901	0.0317	
<i>v</i> /(10 III III01)	303 15	-1 362	0.318	1 237	0.0865	
	308 15	-1 102	-0.476	1 822	0.0000	
Am/mDovo	200.15	-0.220	0.470	1.022	0.0300	
$\Delta \eta$ /mPa·s	298.15	-0.339	0.011	0.050	0.0028	
	303.15	-0.264	-0.022	0.079	0.0023	
	308.15	-0.227	0.010	0.017	0.0016	
$\Delta R/10^6 \text{ (m}^3 \cdot \text{mol}^{-1}\text{)}$	298.15	-13.82	-3.313	-0.019	0.0548	
	303.15	-13.71	-4.124	-0.436	0.0523	
	308.15	-13.40	-4.182	0.074	0.0330	
$\Delta u/m \cdot s^{-1}$	298.15	69.22	19.75	-90.97	1.370	
 		(1)		(0)		
Tri- <i>n</i> -t	outylamir	ne (1) + Tetra	ahydrofura	n (2)		
$V^{E}/(10^{-6} \mathrm{m^{3} \cdot mol^{-1}})$	298.15	1.8732	0.760	0.222	0.0126	
	303.15	1.5013	1.474	-0.307	0.0534	
	308.15	1.7476	0.681	0.422	0.0118	
$\Delta n/mPa \cdot s$	298.15	0.1321	-0.007	-0.075	0.0013	
1	303 15	0 1583	-0.034	-0.001	0.0015	
	308 15	0.1306	-0.006	-0.035	0.0018	
$A P (106 (m^3 mol^{-1}))$	200.15	-20.75	-91 59	-12.27	0.0010	
$\Delta R/10^{\circ}$ (III-III01 -)	290.15	-39.75	-21.52	-12.27	0.1140	
	303.15	-39.93	-21.55	-13.48	0.1350	
	308.15	-39.59	-21.31	-12.96	0.0972	
$\Delta u/m \cdot s^{-1}$	298.15	-24.94	-8.67	-0.85	0.241	
Tri	n hutulan	aino (1) \perp To	tradacana	(9)		
III^{-1}	200 1 5	(1) + 10		(<i>2</i>)	0.0155	
	298.15	0.8251	0.097	-0.596	0.0155	
	303.15	0.2334	0.952	-1.354	0.0390	
	308.15	0.3530	0.496	-0.523	0.0153	
∆η/mPa•s	298.15	-0.167	-0.022	0.015	0.0015	
	303.15	-0.089	-0.118	0.278	0.0040	
	308.15	-0.239	0.003	-0.015	0.0020	
$\Lambda R/10^{6} (m^{3} \cdot mol^{-1})$	298.15	-0.347	0.133	0.441	0.0043	
	303 15	-0.596	-0.107	-0.122	0.00138	
	209.15	-0.495	0.107	0.122	0.0100	
A w/ma. a=1	306.15	-0.465	20.01	5.04	0.0000	
Δu m·s ·	298.15	-38.08	-39.81	-5.04	0.412	
Tri- <i>n</i> -bu	tylamine	(1) + Tetrac	hloroethyle	ene (2)		
$V^{E}/(10^{-6} \text{ m}^{3} \cdot \text{mol}^{-1})$	298.15	1.372	1.127	-0.302	0.0316	
, (10	303 15	0.955	1 306	-1.274	0 2688	
	308 15	1 274	1 083	-0.653	0.2000	
A w/m Doug	200.15	0.024	0.010	0.000	0.0001	
Δη/mPa·s	296.15	0.034	0.010	0.000	0.0003	
	303.15	0.044	-0.027	0.090	0.0039	
	308.15	0.021	0.006	-0.003	0.0001	
$\Delta R/10^6$ (m ³ ·mol ⁻¹)	298.15	-24.25	-10.34	-5.074	0.0498	
	303.15	-24.22	-10.64	-6.278	0.0750	
	308.15	-24.43	-10.28	-5.233	0.0429	
$\Delta u/m \cdot s^{-1}$	298.15	-41.68	3.08	-12.44	0.170	
Tr	'i- <i>n</i> -butyla	amine (1) + F	yridine (2)		
V≝/(10 ⁻⁶ m ³ ·mol ⁻¹)	298.15	2.040	-0.013	0.561	0.0126	
	303.15	1.660	0.606	-0.312	0.0550	
	308.15	2.089	0.044	0.581	0.0189	
$\Delta n/mPa \cdot s$	298.15	-0.227	-0.002	-0.057	0.0023	
	303 15	-0.176	-0.027	0.013	0.0015	
	308 15	-0.180	-0.018	-0.046	0.0010	
$A D/106 (m^3, m^2)^{-1}$	200.15	26.96	90.19	19.94	0.0000	
$\Delta R/10^{\circ}$ (m ^o ·mol ⁻¹)	298.15	-30.80	-20.12	-12.34	0.1333	
	303.15	-36.94	-20.51	-13.75	0.1379	
	308.15	-36.97	-20.06	-13.92	0.1715	
$\Delta u/m \cdot s^{-1}$	298.15	-219.76	-159.50	-33.20	2.444	
The plant domine $(1) + T_{-1} + 1 + \dots + (0)$						
1 []-D 1/E/(10-631-1)	ulyidiiiin	(1) + 111CD		0 107	0 000	
$V^{-1}(10^{\circ} \text{m}^{3} \cdot \text{mol}^{-1})$	298.15	0.8279	1.646	-0.197	0.022	
	303.15	0.2647	2.044	-1.387	0.017	
	308.15	0.7146	1.621	-0.220	0.035	
$\Delta \eta$ /mPa·s	298.15	-0.000	-0.064	-0.033	0.0006	
	303.15	0.023	-0.089	0.021	0.0007	
	308 15	0.005	-0.054	-0.016	0.0008	
$\Lambda R/10^{6} (m^{3} mol^{-1})$	298 15	-32.27	-15 76	-9 476	0.0608	
	202 15	-29 57	_16.04	_10.04	0.0000	
	000.10	-32.37	-10.04	-10.04	0.1200	
1	308.15	-32.52	-15.93	-9.274	0.0945	
$\Delta u/m \cdot s^{-1}$	298.15	25.77	81.47	-52.26	1.008	

the binary coefficient (A_j) and estimate the standard deviation (σ) as follows:

$$V^{E}(\Delta Y) = x_{1}x_{2}\sum_{j=1}^{k}A_{j}(x_{2} - x_{1})^{j-1}$$
(3)

In each case, the optimum number of coefficients (A_j) was

determined from an examination of the variation of standard deviation (σ) as calculated by

$$\sigma = (\sum (Y_{cal}^E - Y_{obs}^E)^2 / (n - m))^{1/2}$$
(4)

Here, *n* is the number of measurements and *m* is the number of coefficients used in fitting the data. The estimated values of A_j and σ for V^{E} , $\Delta \eta$, ΔR , and Δu are presented in Table 3. In all cases, the best fit was found by using only three adjustable fitting coefficients in eq 3.

Literature Cited

- Oswal, S.; Patel, A. T. Speeds of Sound, Isentropic Compressibilities, and Excess Volumes of Binary Mixtures. 1. Trinalkylamines with Cyclohexane and Benzene. J. Chem. Eng. Data 1994, 39, 366–371.
- (2) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane with Ethanediol, Hexane, Tri-*n*-butylamine, and Triethylamine at at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data **2003**, in press.
- (3) Rastogi, M.; Awasthi, A.; Gupta, M.; Shukla, J. P. Ultrasonic study of molecular association in ternary liquid mixtures. *Asian J. Phys.* **1998**, 7, 739–744.
- (4) Pal, A.; Bhardwaj, R. K. Excess Molar Volumes and Viscosities for Binary Mixtures of 2-Propoxyethanol and of 2-Isopropoxyethanol with Propylamine and Dipropylamine at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2001, 46, 933–938.
- (5) Goralski, P.; Wasiak, M.; Bald, A. Heat Capacities, Speeds of Sound, and Isothermal Compressibilities of Some *n*-Amines and Tri-*n*-amines at 298.15 K. J. Chem. Eng. Data 2002, 47, 83–86.
- (6) Venkatesulu, D.; Venkatesu, P.; Rao, M. V. P. Speed of Sound and Isentropic Compressibilities of Trichloroethylene with Branched Alcohols at 303.15 K. J. Chem. Eng. Data 1997, 42, 1145–1146.
- (7) Johri, G. K.; Johri, M.; Johri, S.; Singh. The study of molecular properties of dimethyl substituted pyridines. *J. Proc. IEEE Int. Conf. Dielectr. Liq., (ICDL '99)*, New York, 1999; 13th, pp 590– 593.
- (8) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
- (9) Aminabhavi, T. M.; Aralaguppi, M. I.; Bindu, G.; Khinnavar, R. S. Densities, Shear Viscosities, Refractive Indices, and Speeds of Sound of Bis(2-methoxyethyl) Ether with Hexane, Heptane, Octane, and 2,2,4-Trimethylpentane in the Temperature Interval 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 522–528.
- (10) Aminabhavi, T. M.; Bindu, G. Densities, Shear Viscosities, Refractive Indices, and Speeds of Sound of Bis(2-methoxyethyl) Ether with Nonane, Decane, Dodecane, Tetradecane, and Hexadecane at 298.15, 308.15, 318.15 K. J. Chem. Eng. Data 1994, 39, 529-534.
- (11) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic Interactions in Mixtures of Bromoform with Hydrocarbons. J. Phys. Chem. 1991, 95, 5299–5308.
- (12) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary

Mixtures of Ethyl Chloroacetate with Hexane, Heptane, Octane, Nonane, Decane, and Dodecane. *J. Chem. Eng. Data* **2001**, *46*, 891–896.

- (13) Vijayakumar, R.; Viswanathan, S.; Anand Rao, M. Excess Volumes, Speeds of Sound, and Isentropic Compressibilities of 2-Proyn-1-ol + 1,2-Dichloroethane, + 1,1,1-Trichloroethane, + 1,1,2,2-Tetrachloroethane and + Trichloroethylene at 303.15 K. *J. Chem. Eng. Data* **1996**, *41*, 755–757.
 (14) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H. Excess Medage volume. Everges Learner prior Compressibility and Everges.
- (14) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H. Excess Molar volume, Excess Isentropic Compressibility and Excess Molar Refraction of Binary Mixtures of Methyl Acetoacetate with Benzene, Toluene, *m*-Xylene, Mesitylene, and Anisole. *Fluid Phase Equilib.* **1992**, *71*, 99–112.
- (15) Aralaguppi, M. I.; Aminabhvi, T. M.; Harogoppad, S. B.; Balundgi, R. H. Thermodynamic Interactions in Binary Mixtures of Dimethyl Sulfoxide with Benzene, Toluene, 1,3-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene. J. Chem. Eng. Data 1992, 37, 298–303.
 (16) Aminabhavi, T. M.; Patil, V. B.; Aralaguppi, M. I.; Ortego, J. D.;
- (16) Aminabhavi, T. M.; Patil, V. B.; Aralaguppi, M. I.; Ortego, J. D.; Hansen, K. C. Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of Ethenylbenzene with Hexane, Heptane, Octane, Nonane, Decane, and Dodecane. *J. Chem. Eng. Data* 1997, 42, 641–646.
- (17) Aminabhavi, T. M.; Banerjee, K. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 1-Chloronaphthalene with Benzene, Methylbenzene, 1,4-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene. J. Chem. Eng. Data **1999**, 44, 547–552.
- (18) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Chloroethanol with Methyl Acetate, Ethyl Acetate, *n*-Propyl Acetate, and *n*-Butyl Acetate. *J. Chem. Eng. Data* **1999**, 44, 441–445.
- (19) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Cyclohexanone with Hexane, Heptane, Octane, Nonane, Decane, Dodecane, and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1999, 44, 435–440.
- (20) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Cyclohexanone with Benzene, Methylbenzene, 1,4-Dimethylbenzene, 1,3,5-Trimethylbenzene and Methoxybenzene in the Tempeature Interval (298.15 to 308.15) K. J. Chem. Eng. Data 1999, 44, 446-450.
- (21) Marquardt, D. W. An Algorithm for Least Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431– 441.
- (22) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Techniques of Chemistry, Organic Solvents. Physical Properties and Methods of Purifications; John Wiley & Sons: New York, 1986; Vol. II.
- (23) Aminabhavi, T. M.; Patil, V. B. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Ethenylbenzene with N.N.Dimethylacetamide, Tetrahydrofuran, N.N.Dimethylformamide, 1,4-Dioxane, Dimethyl Sulfoxide, Chloroform, Bromoform, and 1-Chloronaphthalene in the Temperature Interval (298.15–308.15) K. J. Chem. Eng. Data **1998**, 43, 497–503.
- (24) Bakshi, M. S.; Kaur, G. Thermodynamic Behavior of Mixtures.
 4. Mixtures of Methanol with Pyridine and N,N-Dimethylformamide at 25 °C. J. Chem. Eng. Data 1997, 42, 298–300.

Received for review March 17, 2003. Accepted July 7, 2003. This research was funded by the Department of Science and Technology, New Delhi, India (SP/S1/H-09/2000).

JE030147G